3GPP TSG SA WG3 (Security) Meeting #86-bis
S3-170676
27-31 March 2017, Busan (South Korea)
revision of S3-17xabc
Source:
Motorola Solutions
Title:
[MCSec] 33.180 Inter-domain Identity Management Profile
Document for:
Approval

Agenda Item:
4.1
1
Decision/action requested

It is requested that SA3 accept this solution as input to TR 33.180
2
References

[aa]
IETF Draft draft-ietf-oauth-token-exchange-05: “OAuth 2.0 Token Exchange”, https://tools.ietf.org/html/draft-ietf-oauth-token-exchange-05.

3
Rationale
To support the solution #6.1 Inter-domain identity management, details of the solution require definition and profiling.
This contribution extends the MCX Connect profile to include the profiling of the token exchange procedure, which includes the overall flow, messaging (token exchange request message, token exchange response message, token request message, and token response message), client registration, and token validation.
4
Detailed proposal
************************ Start of change 1 *********************************
Annex B (normative):
OpenID connect profile for MCX
B.0
General

The information in this annex provides a normative description of the MCX Connect Authentication and Authorization framework based on the OpenID Connect 1.0 standard. Characterization of the ID token, access token, how to obtain tokens, how to validate tokens, and how to use the refresh token is explained.

The OpenID Connect 1.0 standard provides the source of the information contained in this annex. MCX Connect profiles the OpenID Connect standard and includes the service IDs in the ID token and the access token, as well as the definition of MCX specific scopes for key management, MCX services, configuration management, and group management. This profile is compliant with OpenID Connect.

B.1
MCX tokens

B.1.1
ID token

B.1.1.0
General

The ID Token shall be a JSON Web Token (JWT) and contain the following standard and MCX token claims. Token claims provide information pertaining to the authentication of the MCX user by the IdM server as well as additional claims. This clause profiles the required standard and MC claims for the MCX Connect profile.

B.1.1.1
Standard claims

These standard claims are defined by the OpenID Connect 1.0 specification and are REQUIRED for MCX implementation. Other claims defined by OpenID Connect are optional. The standards-based claims for an MC ID token are shown in table B.1.1.1-1.

Table B.1.1.1-1: ID token standard claims

	Parameter
	Description

	iss
	REQUIRED. The URL of the IdM server.

	Sub
	REQUIRED. A case-sensitive, never reassigned string (not to exceed 255 bytes), which uniquely identifies the MCX user within the MCX server provider’s domain.

	Aud
	REQUIRED. The Oauth 2.0 client_id of the MCX client

	exp
	REQUIRED. Implementers MAY provide for some small leeway, usually no more than a few minutes, to account for clock skew (not to exceed 30 seconds)

	iat
	REQUIRED. Time at which the ID Token was issued. Its value is a JSON number representing the number of seconds from 1970-01-01T0:0:0Z as measured in UTC until the date/time.

B.1.1.2
MCX claims

The MCX Connect profile extends the OpenID Connect standard claims with the additional claims shown in table B.1.1.2-1.
Table B.1.1.2-1: ID token MCX claims

	Parameter
	Description

	mcptt_id
	REQUIRED for MCPTT. The MCPTT ID of the current MCPTT user of the MCPTT client.

	mcvideo_id
	REQUIRED for MCVideo. The MCVideo ID of the current MCVideo user of the MCVideo client.

	mcdata_id
	REQUIRED for MCData. The MCData ID of the current MCData user of the MCData client.

B.1.2
Access token

B.1.2.0
Introduction

The access token is opaque to MCX clients and is consumed by the MCX resource servers (i.e. KMS, MCPTT server, MCVideo server, MCData server, etc). The access token shall be encoded as a JSON Web Token as defined in IETF RFC 7519 [32]. The access token shall include the JSON web digital signature profile as defined in IETF RFC 7515 [35].
B.1.2.1
Standard claims

MC access tokens shall convey the following standards-based claims as defined in IETF RFC 7662 [33].

Table B.1.2.1-1: Access token standard claims

	Parameter
	Description

	exp
	REQUIRED. Implementers MAY provide for some small leeway, usually no more than a few minutes, to account for clock skew (not to exceed 30 seconds).

	scope
	REQUIRED. A JSON string containing a space-separated list of the MCX authorization scopes associated with this token.

	client_id
	REQUIRED. The identifier of the MCX client making the API request as previously registered with the IdM server.

B.1.2.2
MCX claims

The MCX Connect profile extends the standard claims defined in IETF RFC 7662 [33] with the additional claims shown in table B.1.2.2-1.

Table B.1.2.2-1: Access token MCX claims

	Parameter
	Description

	mcptt_id
	REQUIRED for MCPTT. The MCPTT ID of the current MCPTT user of the MCPTT client.

	mcvideo_id
	REQUIRED for MCVideo. The MCVideo ID of the current MCVideo user of the MCVideo client.

	mcdata_id
	REQUIRED for MCData. The MCData ID of the current MCData user of the MCData client.

B.2
MCX client registration

Before an MCX client can obtain ID tokens and access tokens (required to access MCX resource servers) it shall first be registered with the IdM server of the service provider as required by OpenID Connect 1.0. The method by which this is done is not specified by this profile. For native MCX clients, the following information shall be registered:

-
The client is issued a client identifier. The client identifier represents the client's registration with the authorization server, and enables the IdM server to reference parameters associated with that client's registration when being requested for an access token by the MCX client.

-
Registration of the client's redirect URIs.

Other information about the MCX client such as (for example): application name, website, description, logo image, legal terms to be consented to, may optionally be registered.

B.3
Obtaining tokens

B.3.0
General

Once an MCX client has been successfully registered with the IdM server of the MCX service provider, the MCX client may request ID tokens and access tokens (as required to access MCX resource servers such as PTT, Video, Data and KMS). MCX Connect will support a number of different MCX client types, including: native, web-based, and browser-based. Only native MCX clients are defined in this version of the MCX Connect profile. The exact method in which an MCX client requests the access token depends upon the client profile. The MCX client profiles, along with steps required from them to obtain OAuth access tokens, are explained in technical detail below.

B.3.1
Native MCX client

B.3.1.0
General

This conforms to the Native Application profile of OAuth 2.0 as per IETF RFC 6749 [19].

MCX clients fitting the Native application profile utilize the authorization code grant type with the PKCE extension for enhanced security as shown in figure B.3.1.0-1.

[image: image1.emf]Authentication Request

IdMS

MCX

UE

Authentication Response

4. Token Request

5. Token Response

<user authentication>

Figure B.3.1.0-1: Authorization Code flow

B.3.1.1
Authentication Request

As described in OpenID Connect 1.0, the MCX client constructs a request URI by adding the following parameters to the query component of the authorization endpoint's URI using the "application/x-www-form-urlencoded" format, redirecting the user's web browser to the authorization endpoint of the IdM server. The standard parameters shown in table B.3.1.1-1 are required by the MCX Connect profile. Other parameters defined by the OpenID Connect specification are optional.

Table B.3.1.1-1: Authentication Request standard required parameters

	Parameter
	Values

	response_type
	REQUIRED. For native MCX clients the value shall be set to "code".

	client_id
	REQUIRED. The identifier of the MCX client making the API request. It shall match the value that was previously registered with the IdM server of the MCX service provider.

	scope
	REQUIRED. Scope values are expressed as a list of space-delimited, case-sensitive strings which indicate which MCX resource servers the client is requesting access to (e.g. MCPTT, MCVideo, MCData, KMS, etc.). If authorized, the requested scope values will be bound to the access token returned to the client.

The scope value "openid" is defined by the OpenID Connect standard and is mandatory, to indicate that the request is an OpenID Connect request, and that an ID token should be returned to the MCX client.

This profile further defines the following additional authorization scopes:

-
"3gpp:mcptt:ptt_server" (service authorization)

-
"3gpp:mcptt:video_server" (service authorization)

-
"3gpp:mcptt:data_server" (service authorization)

-
"3gpp:mcptt:key_management_server" (key management authorization)

-
"3gpp:mcptt:config_management_server" (config mgmt authorization)

-
"3gpp:mcptt:group_management_server" (group mgmt authorization)

Others may be added in the future as new MCX resource servers are introduced by 3GPP (see note).

	redirect_uri
	REQUIRED. The URI of the MCX client to which the IdM server will redirect the MCX client's user agent in order to return the authorization code to the MCX client. The URI shall match the redirect URI registered with the IdM server during the client registration phase.

	state
	REQUIRED. An opaque value used by the MCX client to maintain state between the authorization request and authorization response. The IdM server includes this value in its authorization response back to the MCX client.

	acr_values
	REQUIRED. Space-separated string that specifies the acr values that the IdM server is being requested to use for processing this authorization request, with the values appearing in order of preference. For minimum interoperability requirements, a password-based ACR value is mandatory to support. "3gpp:acr:password".

	code_challenge
	REQUIRED. The base64url-encoded SHA-256 challenge derived from the code verifier that is sent in the authorization request, to be verified against later.

	code_challenge_method
	REQUIRED. The hash method used to transform the code verifier to produce the code challenge. This profile current requires the usage of "S256"

	NOTE:
The order in which they are expressed does not matter.

An example of an authentication request for MCX Connect might look like:

EXAMPLE:

GET/as/authorization.oauth2?response_type=code&client_id=mcptt_client&scope=openid 3gpp:mcptt:ptt_server&redirect_uri=http://3gpp.mcptt/cb&state=abc123&acr_values=3gpp:acr:password&code_challange=0x123456789abcdef&code_challenge_method=S256

HTTP/1.1
Host: IdMS.server.com:9031
Cache-Control: no-cache
Content-Type: application/x-www-form-urlencoded
Upon receiving the authentication request from the MCX client, the IdM server performs user authentication. Note that user authentication is completely opaque to the MCX client (which never sees any of it, as it is run directly between the IdM server and the user-agent on the UE).

B.3.1.2
Authentication response

The authorization endpoint running on the IdM server issues an authorization code and delivers it to the MCX client. The authorization code is used by the MCX client to obtain an ID token, access token and refresh token from the IdM server. The authorization code is added to the query component of the redirection URI using the "application/x-www-form-urlencoded" format. The authorization code standard parameters are shown in table B.3.1.2-1.

Table B.3.1.2-1: Authentication Response standard required parameters

	Parameter
	Values

	code
	REQUIRED. The authorization code generated by the authorization endpoint and returned to the MCX client via the authorization response.

	state
	REQUIRED. The value shall match the exact value used in the authorization request. If the state does not match exactly, then the NGMI API client is under a Cross-site request forgery attack and shallreject the authorization code by ignoring it and shall not attempt to exchange it for an access token. No error is returned.

An example of an authentication response for MCX Connect might look like.

EXAMPLE:

HTTP/1.1 302 Found

Location:http://mcptt_client/cb?

code=SplxlOBeZQQYbYS6WxSbIA

 &state=abc123

B.3.1.3
Token request

In order to exchange the authorization code for an ID token, access token and refresh token, the MCX client makes a request to the authorization server's token endpoint by sending the following parameters using the "application/x-www-form-urlencoded" format, with a character encoding of UTF-8 in the HTTP request entity-body. Note that client authentication is REQUIRED for native applications (using PKCE) in order to exchange the authorization code for an access token. Assuming that client secrets are used, the client secret is sent in the HTTP Authorization Header. The token request standard parameters are shown in table B.3.1.3-1.

Table B.3.1.3-1: Token Request standard required parameters

	Parameter
	Values

	grant_type
	REQUIRED. The value shall be set to "authorization_code".

	code
	REQUIRED. The authorization code previously received from the IdM server as a result of the authorization request and subsequent successful authentication of the MCX user.

	client_id
	REQUIRED. The identifier of the client making the API request. It shall match the value that was previously registered with the OAuth Provider during the client registration phase of deployment, or as provisioned via a development portal.

	redirect_uri
	REQUIRED. The value shall be identical to the "redirect_uri" parameter included in the authorization request.

	code_verifier
	REQUIRED. A cryptographically random string that is used to correlate the authorization request to the token request.

An example of a token request for MCX Connect might look like.

EXAMPLE:

POST /as/token.oauth2 HTTP/1.1
Host: IdM.server.com:9031
Cache-Control: no-cache
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA&client_id=myNativeApp&code_verifier=0x123456789abcdef&redirect_uri=http://3gpp.mcptt/cb
B.3.1.4
Token Response

If the access token request is valid and authorized, the IdM server returns an ID token, access token and refresh token to the MCX client; otherwise it will return an error.

An example of a successful response might look like:

EXAMPLE:

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{
 "access_token":"eyJhbGciOiJSUzI1NiJ9.eyJtY3B0dF9pZCI6ImFsaWNlQG9yZy5jb20iLCJleHAiOjE0NTM1MDYxMjEsInNjb3BlIjpbIm9wZW5pZCIsIjNncHA6bWNwdHQ6cHR0X3NlcnZlciJdLCJjbGllbnRfaWQiOiJtY3B0dF9jbGllbnQifQ.XYIqai4YKSZCKRNMLipGC_5nV4BE79IJpvjexWjIqqcqiEx6AmHHIRo0mhcxeCESrXei9krom9e8Goxr_hgF3szvgbwl8JRbFuv97XgepDLjEq4jL3Cbu41Q9b0WdXAdFmeEbiB8wo_xggiGwv6IDR1b3TgAAsdjkRxSK4ctIKPaOJSRmM7MKMcKhIug3BEkSC9-aXBTSIv5fAGN-ShDbPvHycBpjzKWXBvMIR5PaCg-9fwjELXZXdRwz8C6JbRM8aqzhdt4CVhQ3-Arip-S9CKd0tu-qhHfF2rvJDRlg8ZBiihdPH8mJs-qpTFep_1-kON3mL0_g54xVmlMwN0XQA",

 "refresh_token":"Y7NSzUJuS0Jp7G4SKpBKSOJVHIZxFbxqsqCIZhOEk9",

"id_token":"eyJhbGciOiJSUzI1NiJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwiYXVkIjoibWNwdHRfY2xpZW50IiwiaXNzIjoiSWRNUy5zZXJ2ZXIuY29tOjkwMzEiLCJpYXQiOjE0NTM0OTgxNTgsImV4cCI6MTQ1MzQ5ODQ1OCwibWNwdHRfaWQiOiJhbGljZUBvcmcuY29tIn0.Dpn7AhIMaqMEgg12NYUUfJGSFJMPG8M2li9FLtPotDlHvwU2emBws8z5JLw81SXQnoLqZ8ZF8tIhZ1W7uuMbufF4Wsr7PAadZixz3CnV2wxFV9qR_VA1-0ccDTPukUsRHsic0SgZ3aIbcYKd6VsehFe_GDwfqysYzD7yPwCfPZo",
"token_type": "Bearer",
"expires_in": 7199
}

The MCX client may now validate the user with the ID token and configure itself for the user (e.g. by extracting the MC service ID from the ID Token). The MCX client then uses the access token to make authorized requests to the MCX resource servers (MCPTT server, MCVideo server, MCData server, KMS, etc.) on behalf of the end user.

B.4
Refreshing an access token

B.4.0
General

To protect against leakage or other compromise, access token lifetimes are typically short lived (though it is ultimately a matter of security policy & configuration by the service provider). Some client types can be issued longer-lived refresh tokens, which enable them to refresh the access token and avoid having to prompt the user for authentication again when the access token expires. Refresh tokens are available only to clients utilizing the authorization code grant type (native MCX clients and web-based MCX clients). Refresh tokens are not given to clients utilizing the implicit grant type (browser-based MCX clients). Figure B.4.0-1 shows how Native MCX clients can use the refresh token as a grant type to obtain new access tokens.

[image: image2.emf]Access Token Request

IdMS

MCX

UE

Access Token Response

Figure B.4.0-1: Requesting a new access token

B.4.1
Access token request

To obtain an access token from the IdM server using a refresh token, the MCX client makes an access token request to the token endpoint of the IdM server. The MCX client does this by adding the following parameters using the "application/x-www-form-urlencoded" format, with a character encoding of UTF-8 in the HTTP request entity-body. The access token request standard parameters are shown in table B.4.1-1.

Table B.4.1-1: Access token request standard required parameters

	Parameter
	Values

	grant_type
	REQUIRED. The value shall be set to "refresh_token".

	scope
	Space-delimited set of permissions that the MCX client requests. Note that the scopes requested using this grant type shall be of equal to or lesser than scope of the original scopes requested by the MCX client as part of the original authorization request.

An example of a token request for MCX Connect might look like:

EXAMPLE:

POST /as/token.oauth2 HTTP/1.1
Host: IdM.server.com:9031
Cache-Control: no-cache
Content-Type: application/x-www-form-urlencoded

grant_type=refresh_token&refresh_token=Y7NSzUJuS0Jp7G4SKpBKSOJVHIZxFbxqsqCIZhOEk9&scope=3gpp:mcptt:ptt_server

If the MCX client was provided with client credentials by the IdM server, then the client shall authenticate with the token endpoint of the IdM server utilizing the client credential (shared secret or public-private key pair) established during the client registration phase.

B.4.2
Access token response

In response to the access token request (above) the token endpoint on the IdM server will return an access token to the MCX client, and optionally another refresh token.

An example of a successful response for MCX Connect might look like:
EXAMPLE:

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{
 "access_token":"eyJhbGciOiJSUzI1NiJ9.eyJtY3B0dF9pZCI6ImFsaWNlQG9yZy5jb20iLCJleHAiOjE0NTM1MDYxMjEsInNjb3BlIjpbIm9wZW5pZCIsIjNncHA6bWNwdHQ6cHR0X3NlcnZlciJdLCJjbGllbnRfaWQiOiJtY3B0dF9jbGllbnQifQ.XYIqai4YKSZCKRNMLipGC_5nV4BE79IJpvjexWjIqqcqiEx6AmHHIRo0mhcxeCESrXei9krom9e8Goxr_hgF3szvgbwl8JRbFuv97XgepDLjEq4jL3Cbu41Q9b0WdXAdFmeEbiB8wo_xggiGwv6IDR1b3TgAAsdjkRxSK4ctIKPaOJSRmM7MKMcKhIug3BEkSC9-aXBTSIv5fAGN-ShDbPvHycBpjzKWXBvMIR5PaCg-9fwjELXZXdRwz8C6JbRM8aqzhdt4CVhQ3-Arip-S9CKd0tu-qhHfF2rvJDRlg8ZBiihdPH8mJs-qpTFep_1-kON3mL0_g54xVmlMwN0XQA",
 "refresh_token": "iTxQYALqlc7uLyFGpnl8tR8Y9gkw91mFy2qC9Yywkz",
 "token_type": "Bearer",
 "expires_in": 7199
}

It is possible to configure the IdM server to confirm that the user account is still valid each time the refresh token is presented, and to revoke the refresh token if not. This security practice is RECOMMENDED.
B.5
MCX client registration with partner IdM service
MCX client registration with a partner IdM service shall be as described in clause B.2.
B.6
Obtaining an access token from a partner domain

B.6.1
Overview

When an MCX user requires user service authorisation for services owned and managed within a partner domain, the MCX user shall use the OAuth 2.0 extension grant type mechanism described in [aa] to obtain a security token for authentication with the partner IdM service. The OAuth 2.0 token exchange procedure defines a method for obtaining the security token from the primary IdMS which contais information about the user that is verifiable by the partner IdMS. The MCX client provides this security token to the partner IdM service in exchange for an access token that is specific to the services in the partner domain. The MCX UE then uses the access token for user service authorisation within the partner services.

The security token and acess token(s) are specific to a IdM domain and therefore the OAuth 2.0 token exchange procedure shall be repeated with each domain for user service authorisation to the partner services.

 Figure B.6.1-1 shows the OAuth 2.0 token exchange procedure used to obtain a security token and acess token(s). The messages are described in the following sub-clauses.

[image: image3.emf]Token Exchange Request

Primary

IdMS

MCX

UE

Token Request

Token Exchange Response

Partner

IdMS

Token Response

Partner

servers

User Authentication (clause 5.1.2.2)

Service authorization to partner domain services

Figure B.6.1-1: Token exchange flow
B.6.2
Token Exchange Request

The MCX client constructs a request URI by adding the following parameters to the query component of the authorization endpoint's URI using the "application/x-www-form-urlencoded" format, redirecting the user's web browser to the authorization endpoint of the IdM server. The standard parameters shown in table B.6.2-1 are required by the MCX Connect profile. Other parameters defined by the OpenID Connect specification are optional.

Table B.6.2-1: Token Exchange Request standard required parameters

	Parameter
	Values

	grant_type
	REQUIRED. The value shall be set to “urn:ietf:params:oauth:grant-type:token-exchange” indicating that a token exchange is being performed.

	subject_token
	REQUIRED. A token that represents the identity of the party on behalf of whom the request is being made. This shall be the access token obtained in the token response message (clause B.3.1.4) during authorisation (clause B.3).

	subject_token_type
	REQUIRED. An identifier that indicates the type of the security token in the subject_token parameter. The value shall be set to “urn:ietf:params:oauth:token-type:jwt” indicating the access token is a JSON Web Token.

	aud
	REQUIRED. The audience is the target of the security token, i.e. the authorisation endpoint of the target IdMS in the partner system.

	scope
	REQUIRED. Scope values are expressed as a list of space-delimited, case-sensitive strings which indicate which MCX resource servers the client is requesting access to at the partner system (e.g. MCPTT group services, MCVideo group services, MCData group services, etc.). If authorized, the requested scope values will be bound to the access token returned to the client in the token response message. The scope shall include one or more of the following:

-
"3gpp:mc:ptt_service"

-
"3gpp:mc:video_service"

-
"3gpp:mc:data_service"

-
"3gpp:mc:ptt_key_management_service"

-
"3gpp:mc:video_key_management_service"

-
"3gpp:mc:data_key_management_service"

-
"3gpp:mc:ptt_config_management_service"

-
"3gpp:mc:video_config_management_service"

-
"3gpp:mc:data_config_management_service"

-
"3gpp:mc:ptt_group_management_service"

-
"3gpp:mc:video_group_management_service"

-
"3gpp:mc:data_group_management_service"
Others may be added in the future as new MCX resource servers are introduced by 3GPP (see note).

B.6.3
Token Exchange Response

Upon successfully receiving and validating the token exchange request message from the MCX client, the IdM server shall return a token exchange response containing a security token specific to the partner IdMS.
The token exchange response standard parameters are shown in table B.6.3-1.
Table B.6.3-1: Token exchange response standard required parameters

	Parameter
	Values

	access_token
	REQUIRED. This is the security token specific to the partner IdMS.

	issued_token_type
	REQUIRED. This field shall be “urn:ietf:params:oauth:token-type:jwt”

	token_type
	REQUIRED. This field shall be “bearer”

	expires_in
	RECOMMENDED. The lifetime in seconds of the security token.

B.6.4
Token Request

In order to exchange the security token for an access token and refresh token, the MCX client makes a request to the partner authorization server's token endpoint by sending the following parameters using the "application/x-www-form-urlencoded" format, with a character encoding of UTF-8 in the HTTP request entity-body. Note that client authentication is REQUIRED for native applications (using PKCE) in order to exchange the security token for an access token. The security token is sent in the HTTP Authorization Header. The token request standard parameters are shown in table B.6.4-1.

Table B.6.4-1: Token Request standard required parameters

	Parameter
	Values

	grant_type
	REQUIRED. The value shall be set to "authorization_code".

	token
	REQUIRED. This is the security token received in the successful token exchange response.

B.6.5
Token Response

If the token request is valid and authorized, the partner IdM server returns an access token to the MCX client specific to the user for the partner services and optionally a refresh token; otherwise, it will return an error.

An example of a successful response might look like:

EXAMPLE:

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{
 "access_token":"eyJhbGciOiJSUzI1NiJ9.eyJtY3B0dF9pZCI6ImFsaWNlQG9yZy5jb20iLCJleHAiOjE0NTM1MDYxMjEsInNjb3BlIjpbIm9wZW5pZCIsIjNncHA6bWNwdHQ6cHR0X3NlcnZlciJdLCJjbGllbnRfaWQiOiJtY3B0dF9jbGllbnQifQ.XYIqai4YKSZCKRNMLipGC_5nV4BE79IJpvjexWjIqqcqiEx6AmHHIRo0mhcxeCESrXei9krom9e8Goxr_hgF3szvgbwl8JRbFuv97XgepDLjEq4jL3Cbu41Q9b0WdXAdFmeEbiB8wo_xggiGwv6IDR1b3TgAAsdjkRxSK4ctIKPaOJSRmM7MKMcKhIug3BEkSC9-aXBTSIv5fAGN-ShDbPvHycBpjzKWXBvMIR5PaCg-9fwjELXZXdRwz8C6JbRM8aqzhdt4CVhQ3-Arip-S9CKd0tu-qhHfF2rvJDRlg8ZBiihdPH8mJs-qpTFep_1-kON3mL0_g54xVmlMwN0XQA",
 "refresh_token": "iTxQYALqlc7uLyFGpnl8tR8Y9gkw91mFy2qC9Yywkz",
 "token_type": "Bearer",
 "expires_in": 7199
}

The MCX client then uses the access token to make authorized requests to the partner MCX resource servers (MCPTT group management service, MCVideo group management service, MCData group management service, etc) on behalf of the end user.
B.7
Security tokens
Security tokens obtained from the primary IdMS and used for authentication with a partner IdMS shall conform to the id token requirements and format described in clause B.1.1.
B.8
Access tokens for partner services
Access tokens obtained from a partner IdMS and used for user service authorisation to services within the partner domain shall conform to the access token requirements and format described in clause B.1.2.
B.9
Using the token to access MCX resource servers

MCX Connect shall initially support the bearer access token type. Access tokens of type "bearer" shall be communicated from the MCX client to MCX resource servers by including the access token in the HTTP Authorization Header, per IETF RFC 6750 [20].

The access token is opaque to the MCX client, meaning that the client does not have any knowledge of the access token itself. The client will be given some metadata corresponding to the access token, such as its expiration time, so that it does not send an expired access token to MCX resource servers. If the access token is presented to an MCX resource server and the scope is invalid or the token is expired or revoked, the MCX resource server should return an error message indicating such to the MCX client.

B.10
Token validation

B.10.1
ID token validation

The MCX client shall validate the ID token as per section 3.1.3.7 of the OpenID Connect 1.0 specification [21].

B.10.2
Access token validation

MCX resource servers shall validate access tokens received from the MCX client according to IETF RFC 7519 [32].
B.10.3
Security token validation
The IdM server shall validate the security token as per section 3.1.3.7 of the OpenID Connect 1.0 specification [21].
************************* End of change 3 *********************************
Access Token Request
IdMS
MCX
UE
Access Token Response

Token Exchange Request
Primary IdMS
MCX
UE
Token Request
Token Exchange Response
Partner IdMS
Token Response
Partner servers
User Authentication (clause 5.1.2.2)
Service authorization to partner domain services

Authentication Request
IdMS
MCX
UE
Authentication Response
4. Token Request
5. Token Response
<user authentication>

